
Computer tools in education, 2019

№ 2: 55–64

http://cte.eltech.ru

doi:10.32603/2071-2340-2019-2-55-64

MATHEMATICAL MODELING AND PROGRAMMING

IN SCIENCE EDUCATION

Weigend M.
1,2
, Dr., associate professor, mw@creative-informatics.de

1
Holzkamp-Gesamtschule, 2, Willy-Brandt-Str., 58453, Witten, Germany

2
Westfälische Wilhelms Universität, 2, Schlossplatz, 48149, Münster, Germany

Abstract

Using mathematical models to represent aspects of physical reality is an essential activity

in science and science education. This contribution discusses four approaches of using

computer programming and mathematical models in classroom activities:

1) Mathematical models, found in the textbook, are used as a basis for computer pro-

grams. Students, when creating useful interactive python programs calculating concen-

trations or pH-values, experience similar intellectual challenges as in solving traditional

text book problems.

2) Scratch-animations simulating physical or chemical systems simulation can be specifi-

cally designed to check the validity of given mathematical models.

3) A computer-related challenge is to design a simulation (like gas diffusion in a closed

system with two phases) that might be a basis for discovering a mathematical model (like

Henry’s law) or just an element of a mathematical model.

4) Using sensor technology and a Raspberry Pi, students create a computer program that

automatically visualizes the observed system behaviour (like changes in gas concentra-

tions) in order to find a mathematical model.

Keywords: Science education, Python, Scratch, Programming.

Citation: M. Weigend, “Mathematical Modeling and Programming in Science Education”,

Computer tools in education, no. 2, pp. 55–64, 2019; doi:10.32603/2071-2340-2019-2-

55–64

1. INTRODUCTION

Models of the physical reality that are taught in high school science lessons are represented

by mathematical equations. Well known examples from physics are Einstein’s equation

E = m · c2
representing the idea that energy can be transformed to matter and vice ver-

saand E = h · f representing the dual model of light (discrete photons with energy E versus
electromagnetic waves with a frequency f).
There exist special digital tools for performing simulations and discovering and exploring

models. They can be grouped in two types:

• Open modelling tools like Insightmaker (https://insightmaker.com/) allow students to cre-

ate dynamic models of physical systems and study their behaviour.

• In virtual laboratories, students can simulate experiments that are too expensive, too

time-consuming or too dangerous in reality [3].

COMPUTER IN EDUCATION 55

http://cte.eltech.ru
http://dx.doi.org/10.32603/2071-2340-2019-2-55-64
mailto:mw@creative-informatics.de

Weigend M.

Specialized digital tools have great potential for learning. However, they have certain limita-

tions:

• Students use highly specialized software-tools only seldom. Still they have to acquire tech-

nical knowledge to be able to handle the tool. And part of this knowledge is not transfer-

able and not related to any educational goal.

• A virtual laboratory is a surrogate for reality and hides the underlyingmathematical mod-

els.

Programming projects — using a general purpose programming language like Python or

Scratch— are different from classroom activities with specialized digital tools:

• They imply creating useful digital artifacts and have a stronger focus on engineering and

designing than on researching. ”Learning by creating” is the educational paradigm of

”Constructionism” ([1, 2]).

• The students need to develop general informatics competences before and during the

project. This takes time and may require some ”professional support” by a computer sci-

ence teacher. However, the acquired computer-related knowledge is deeper and more

general. ”Computational thinking” is more and more considered as a competence that ev-

erybody should develop— not just professional programmers [6].

• Programming challenges can be designed in a way that mathematical modelling is specif-

ically involved.

This contribution discusses four approaches of integrating computer programming and math-

ematical modeling in science education: 1) Using mathematical models as a basis for simple in-
teractive Python programs. 2) Developing animations simulating physical or chemical systems

in order to check the validity of given mathematical models. 3) Designing computer simulations

in order to discover mathematical models. 4) Creating computer programs that automatically

visualize sensor data and support checking mathematical models.

2. APPLYING MATHEMATICAL MODELS TO CREATE COMPUTER PROGRAMS

High school science textbooks contain exercises that require algebraic transformations and

calculation. The educational idea is to comprehend the mathematical models by applying them.

Example from a German Chemistry textbook [4]: Calculate the pH of these solutions:

• Sodium hydroxide solution, c0(N aOH) = 1 mol/L
• Ammonia solution, c0(N H3) = 0.2 mol/L
The solution of this task requires these activities:

• Find relevant mathematical models: pH =−log10(c(H3O+)) and pH +pOH = 14.
• Do algebraic transformations and solve equations.

• Look up chemical constants (like pK B(N H3))in a table.
• Use correct wording, in particular write correct units like mol/L for concentrations.

In contrast to conventional pencil and paper textbook exercises, a programming task requires

to develop a digital artifact, that is useful for other people. Example: Write a Python program

that asks for the concentration of sodium hydroxide (N aOH) in water and then calculates the
pH of the solution. That implies basically the same activities as in finding the solution of a text-

book problem, but they are now part of a design process. The programmer must create verbal

system responses that are precise and well understandable and uses scientific vocabulary and

units because they are essential, when asking for input data. Example ”Input the concentration

of NaOH in mol/L.” For programming beginners, the first approach would be an interactive pro-

gram, following an input-processing-output pattern.

56 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Mathematical Modeling and Programming in Science Education

Figure 1. Application window of a Python program calculating pH-values.

from math import log10

print (" Enter the concentration of the NaOH solution . ")

x = input (" c (NaOH) in mol /L : ")

c = f loa t (x)

i f c < 10**(−7): #1

c = 10**(−7)
pH = 14 − (− log10 (c)) #2

print ("pH" , round(pH, 1))

Example dialog:

Enter the concentration of the NaOH solution .

c (NaOH) in mol /L : 0.2

pH 13.3

The program is so short that beginners can develop it from scratch. Line #2matches the equation

that a student needs to develop when solving the first word problem. The word problem implies

calculations for one given concentration, whereas the program should be able to process all

concentrations and calculate reasonable results. This makes the program more complex than

the single case of a word problem and it requires a deeper elaboration of the chemistry model

The statement in line #2 is reasonable under the assumption that N aOH dissociates com-

pletely to sodium ionsN a+
and hydroxide IonsOH−

. Since in neutral water the concentration of

hydroxide ions is only 10−7
mol/L, in all solutions of practical relevance c(OH-) is approximately

equal to c(N aOH). However, the computer program must handle the case that the user inputs
a lower concentration, may be even 0 mol/L. The statement in line #1 takes care of this. Here

the programmer has used the knowledge that in neutral water pH equals pOH . The equation
pH+pOH = 14 then implies that pOH = 7. Thus c(OH−) = 10−7

mol/L. In any solution of N aOH
in water, the concentration of hydroxide ions may never be below this value. More experienced

students may want to develop a version with a graphical user interface (GUI). The advantage is

that is easier to use and that it looks more like a regular app in everyday life.

Obviously, the following Python listing is more advanced. Note that the complete chemistry-

related calculation is within a single function definition starting at line #1. So, beginners could

take a prototype program text that already implements the GUI and just code this function.

from tkinter import *

from math import log10

def calculate () : #1

x = entry . get ()

c = f loa t (x)

i f c < 10**(−7):

COMPUTER IN EDUCATION 57

Weigend M.

c = 10**(−7)
pH = 14 − (− log10 (c))
output = "pH { : . 1 f } " . format (pH)

resultLabel . config (text=output)

Widgets

window= Tk ()

label = Label (master =window, text = " c (NaOH) : ")

resultLabel = Label (master=window, width = 10 ,

font =(" Arial " , 32) , fg ="white " ,

bg = "blue ")

button = Button (master=window, text =" Calculate pH" ,

command=calculate ,

font =(" Arial " , 12) , fg ="blue ")

entry = Entry (master=window, width=20)

Layout

resultLabel . pack ()

label . pack (side=LEFT)

entry . pack (side=LEFT)

button . pack (side=LEFT)

window.mainloop ()

3. CHECKING MATHEMATICAL MODELS USING COMPUTER SIMULATIONS

In high school education, mathematical models are often just used for calculations, but not

deduced from assumptions. A classic example from kinetics is the equation

s = s0 + 1

2
at 2

(3.1)

It specifies the location s of a uniformly accelerated object. This equation can be derived from
the definition of acceleration a = d v

d t by algebraic rearrangement and integration. Alternatively,

it is possible to create a computer simulation, modelling a rocket or a free-falling stone. If po-

sition, speed, acceleration and elapsed time are documented one can compare the behaviour

of the simulation with the mathematical model. Figure 1 depicts a Scratch project simulating a

uniformly accelerated object. To avoid negative numbers, it is not a free-falling object driven by

gravity but a rocket car moving from left to right. The script reveals the modelling: The change

of position during a time step d t is determined by speed (d s = v ·d t) and the change of speed
is determined by acceleration (d v = a ·d t). Command block 1 calculates the position that is ex-
pected according to the mathematical model (equation 1). During run time one can watch the

readouts on top of the screen and compare the values. Obviously, the values are similar but not

equal. The smaller the value of the time step d t the better the numerical approximation. In a
real physical experiment [5], the mathematical model can be verified just by observing a real

falling object measuring distances and time intervals. Note the difference: In this approach the

model is considered as a black boxmodel. It describes the behaviour but does not explain it. Real

experiments for checking mathematical models can be dull and time consuming. For example,

58 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Mathematical Modeling and Programming in Science Education

Figure 2. Scratch project modelling an accelerating rocket car.

the Beer-Lambert law is the basis of photometry, a method to determine the concentration of a

dye solution by measuring the absorbance of monochromatic light of a certain wavelength. The

absorbance (extinction) is measured according to equation (2), I0 is the initial light intensity and

I1 is the intensity of the light after having travelled through the solution.

A = l g (
I 0

I 1
) (3.2)

According to the Beer-Lambert Law, the absorbance of a dye solution is proportional to the con-

centration (mols per litre) and path length. The constant ε is the molar extinction coefficient,

which is a physical property of the analyte and depends on the wavelength of the monochro-

matic light travelling through the solution.

A = ε ·d · c (3.3)

The derivation of the Beer-Lambert Law requires knowledge of the calculus that high school

students (in Germany) usually do not have. Fig. 3 shows a screen shot from a simple Scratch

simulation, illustrating that the absorbance is proportional to pathlength. The green spots on

the background represent dye molecules in the solution. Red photons travel from left to right

starting at random y-positions and leaving a red track. When a photon hits a molecule, it van-

ishes. The absorption events are counted. The two readouts on top show the number of pho-

tons, which have been absorbed in the first half and the number of photons, which have been

absorbed, in the second half. From these numbers the light intensities I0 (initial intensity), I1

(intensity in the middle) and I2 (intensity after the solution) are calculated. It may seem plau-

sible that the absorbency of light is proportional to the pathlength. But it might be disturbing

that the logarithm is used to calculate the absorbance. The simulation is not an analytical proof

COMPUTER IN EDUCATION 59

Weigend M.

Figure 3. Scratch project illustrating the Beer-Lambert-Law.

that the Beer-Lambert Law is correct. But it demonstrates that it is a logical consequence of the

assumptions we have made in the design of the model.

4. CREATING A COMPUTER SIMULATION IN ORDER TO FIND A MATHEMATICAL MODEL

It is very hard and time consuming to discover quantitative scientific laws and create amath-

ematical model. People can only be creative in a domain they know well. If students are expe-

rienced in Scratch programming, they can use this knowledge to design a simulation that might

be a basis for a mathematical model.

Task: Consider a closed system with two phases — fluid and gas — like a bottle of mineral

water. The water (phase 1) contains solved carbon dioxide as well as the air (phase 2) on top. The

carbon dioxide molecules move, when they hit the interface between the two phases, they just

change to the other phase, fromwater to air and vice versa. Assumptions: 1) TheCO2 molecules

move with a constant speed on straight trajectories. 2)CO2 molecules move slower in the water

than in the air, since they hit water molecules all the time (the water molecules are invisible).

Challenge: 1) Create the Scratchmodel. 2) Observe the Scratchmodel with different numbers

of molecules and write a hypothesis (equation). 3) Try to verify the hypothesis using the Scratch

model.

Fig. 4 shows a possible implementation with Scratch using clones and message passing.

The first script generates several clones. The second scripts defines the motion of each clone

(molecule). When a molecule is in the water phase (dark blue area at the bottom), it moves

slower than in the gas phase (light blue area on top).

A version of Henry’s Law is

c(CO2(g))

c(CO2(aq))
= k (4.1)

60 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Mathematical Modeling and Programming in Science Education

Figure 4. Scratch project simulating gas particles in two phases and checking Henry’s Law.

If the volume is constant, the concentration is proportional to the number of molecules. In the

background, a script (connected to the stage) is running sending amessage to all molecule-clones

every four seconds. When a molecule-clone receives the message, it checks its position and in-

crements a global variable. Thus, we have the numbers of molecules in both phases (variables

displayed in the upper left corner of the screen). On the screen shot in fig. 4 the third readout

on screen displays the quotient of the numbers of ”CO2-molecules” in both ”phases” this way

checking Henry’s Law. Note that this Scratch program is not just a simulation. Additional to rep-

resenting objects of the physical world it includes specifically designed features for ”measuring”

and checking mathematical models.

5. VISUALIZING SENSOR DATA

In the previous section we discussed the evaluation of computer simulations, which were

based on simple assumptions like the the behaviour of gas molecules. mathematical models

(like Henry’s Law) that are found by checking simulations are basically not more than logical

deductions from the model the simulation is based upon. This section discusses the autom-

atized evaluation of empirical data, gained by observing real experiments. The Raspberry Pi

supports experimenting with all kinds of sensors (luminosity, temperature,ethanol, methane,

carbon dioxide etc.).

Fig. 5 shows an NDIR (non-dispersive infrared) carbon dioxide sensor, connected via SPI (se-

rial peripheral interface) to a Raspberry Pi. It is not very difficult to create a Python program that

reads the sensor data and collects them in a list. The list of numbers can easily be plotted using

the Python module MathPlotLib. A simple experiment with this sensor is the observation of gas

diffusion. The NDIR-sensor is a tube with holes allowing gas molecules to enter and to leave.

Inside the tube the CO2-concentration is measured by detecting the absorbance of infrared ra-

diation. When a person breathes against the sensor, the CO2-concentration increases, because

more CO2 gets into the tube through the holes. After a few seconds it decreases again, because

the gas molecules move (diffusion) and leave the tube through the holes.

COMPUTER IN EDUCATION 61

Weigend M.

Figure 5. NDIR-CO2-sensor connected to the GPIO of a Raspberry Pi

Fig. 6 shows the output of a Python program that semi-automatically conducts the diffusion

experiment, collects the sensor data and creates a plot (usingMatPLotLib). A further challenge is

to formulate a mathematical model for the change of the concentration ofCO2 in the tube, write

Python code to calculate a list of numbers, create a plot visualizing this list (using MatPlotLib)

and compare it with the plot based on empirical data.

Figure 6. Plot visualizing the change of CO2-concentration due to diffusion

6. CONCLUSION

Programming projects can be an enrichment of science classes. They offer many different

ways to elaborate, check or even develop mathematical models of the physical world. This di-

versity makes it possible that even those students that are not primarily interested in math can

find motivation to learn theoretical content. Since a programming project can be open and lead

62 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Mathematical Modeling and Programming in Science Education

to different products, learning is more individual. An open question is, to what extend students

can develop programming competence on their own (without teacher’s help) during projects

in regular sciences classes. Physics, chemistry and biology teacher are not necessarily program-

ming experts. One type of support are media (movies, tutorials, skill cards), specifically designed

for science-related projects.

References

1. S. Papert, Mindstorms: “Children, computers, and powerful ideas,” Basic Books, New York, 1980.
2. M. Resnick, J. Maloney, A. M. Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,

J. Silver, B. Silverman, and Y. Kafai, “Scratch: Programming for All,” Communications of the ACM, vol.
52, no. 11, pp. 60–67, 2009.

3. V. Potkonjak, M. Gardner, V. Callaghan, P. Mattila, C. Guetl, V. M.Petrović, and K. Jovanović, “Virtual lab-

oratories for education in science, technology, and engineering: A review,” Computers and Education,
vol. 95, pp. 309–327, 2016.

4. N. Tausch and M. von Wachtendonk, Chemie 2000+ Qualifikationsphase, Buchner Verlag, Bamberg,
2015.

5. L. Borghi, A. De Ambrosis, N. Lamberti, and P. Mascheretti, “A teaching–learning sequence on free fall

motion,” Physics education, vol. 40, no. 3, pp. 266–273, 2005.
6. J. M. Wing, “Computational Thinking,” In Communications of the ACM, vol. 49, no. 3, pp. 33–35, 2006.

Received 12.04.2019, the final version— 16.05.2019.

Компьютерные инструменты в образовании, 2019

№ 2: 55–64

УДК: 004.942

http://cte.eltech.ru

doi:10.32603/2071-2340-2019-2-55-64

Математическое моделирование и программирование

в естественнонаучном образовании

Вайгенд М.
1,2
, доктор наук, mw@creative-informatics.de

1
Хольцкампская общеобразовательная школа, Виттен, Германия

2
Вестфальский университет Вильгельма,Мюнстер, Германия

Аннотация

Использование математических моделей для представления аспектов физической

реальности является важной деятельностью в науке и научном образовании. В дан-

ной статье рассматриваются четыре подхода к использованию компьютерного про-

граммирования и математического моделирования в учебной деятельности:

1) Математические модели, найденные в учебнике, используются в качестве осно-

вы для компьютерных программ. Студенты, создавая полезные интерактивные про-

граммы на языке Python, рассчитывающие концентрации или значения pH, сталки-

ваются с такими же интеллектуальными проблемы, как при решении традиционных

задач учебника.

COMPUTER IN EDUCATION 63

http://cte.eltech.ru
http://dx.doi.org/10.32603/2071-2340-2019-2-55-64
mailto:mw@creative-informatics.de

Weigend M.

2) Scratch-анимации, имитирующие моделирование физических или химических

систем, могут быть специально разработаны для проверки достоверности заданных

математических моделей.

3) Задача, связанная с компьютером, заключается в разработке моделирования (на-

пример, диффузии газа в замкнутой системе с двумя фазами), что может быть осно-

вой для открытия математической модели (например, закона Генри) или элемента

математической модели.

4) Используя сенсорную технологию и Raspberry Pi, студенты создают компьютер-

ную программу, которая автоматически визуализирует наблюдаемое поведение си-

стемы (например, изменение концентрации газа), чтобы в дальнейшем разработать

математическую модель.

Ключевые слова: наука образование, Python, Scratch, программирование.

Цитирование: Вайгенд М. Математическое моделирование и программирование

в естественнонаучном образовании // Компьютерные инструменты в образовании.

2019.№ 2. С. 55–64. doi: 10.32603/2071-2340-2019-2-55–64

Поступила в редакцию 12.04.2019, окончательный вариант— 16.05.2019.

64 © COMPUTER TOOLS IN EDUCATION.№2, 2019

	INTRODUCTION
	APPLYING MATHEMATICAL MODELS TO CREATE COMPUTER PROGRAMS
	CHECKING MATHEMATICAL MODELS USING COMPUTER SIMULATIONS
	CREATING A COMPUTER SIMULATION IN ORDER TO FIND A MATHEMATICAL MODEL
	VISUALIZING SENSOR DATA
	CONCLUSION

